Формы транспирации и ее физиологическое значение

Транспирация у растений

Формы транспирации и ее физиологическое значение

Испарение воды растением представляет собой физический процесс, так как при этом в межклеточниках листьев вода переходит в парообразное состояние, и затем образовавшийся пар через устьица диффундирует в окружающее пространство.

Однако испарение воды — это и сложный физиологический процесс, поскольку он связан с анатомическими и физиологическими особенностями растений, поэтому в отличие от физического, физиологический процесс испарения растением воды и назван транспирация у растений.

Транспирация у герани

От чего зависит транспирация у растений

Зависит транспирация у растений от:

  • количества и размеров проводящих сосудов,
  • числа устьиц,
  • толщины кутикулы,
  • состояния коллоидов протоплазмы,
  • концентрации клеточного сока и других причин.

Вода передвигается вверх по стеблю, так как в результате транспирации в клетках листьев возникает сосущая сила, которая передается от них до корневых волосков корня, поглощающих воду из почвы.

Если поместить срезанную ветку или какое-либо растение в сосуд с водой, в течение долгого времени растение не вянет, что указывает на присасывающее действие транспирации.

Значение транспирации

Значение транспирации заключается в том, что:

  • вместе с водой по растению передвигаются поступившие в него минеральные элементы;
  • транспирация понижает температуру листа и защищает его от перегрева.

Оранжерея растений

Например, в оранжереях и парниках, где воздух влажный и транспирация подавлена, бывают ожоги листьев солнечными лучами. За счет транспирации создается некоторая недонасыщенность водой коллоидов протоплазмы, что способствует нормальному плодоношению и созреванию плодов, так как в этом случае идут синтетические процессы.

Влияние внешней среды

Влияние факторов внешней среды на процесс транспирации и ее суточный ход, выражается действием следующих  факторов:

  •  влияние света,
  • температуры воздуха,
  • сила ветра,
  • степень насыщения воздуха парами воды.

Влияние факторов внешней среды на процесс транспирации у растений

Свет способствует открытию устьичных щелей и повышает проницаемость протоплазмы испаряющих клеток для воды. Хлорофилл энергично поглощает солнечные лучи, что повышает температуру листа и усиливает испарение.

Увеличение транспирации снижает температуру листа, в результате чего испаряющие листья: не перегреваются. Даже рассеянный свет повышает транспирацию на 30—40% по сравнению с транспирацией, идущей в темноте. По данным Визнера, 100 кв. см листа кукурузы испаряют в темноте 97 мг воды, на рассеянном — 114 мг, на прямом солнечном свету —785 мг.

Температура воздуха, окружающего растение, также, влияет на транспирацию. С повышением температуры транспирация увеличивается, так как при этом усиливаются движение молекул воды и скорость диффузии водяного пара с поверхности коллоидов клеточных оболочек.

Сила ветра может играть двоякую роль в процессе транспирации. Роль ветра сводится к замене влажных слоев воздуха над листьями растений сухими, т. е. ветер влияет только па вторую фазу транспирации — выход пара из межклеточников листа. Сильный ветер треплет листья, что вызывает замыкание устьичных щелей и тем снижает транспирацию.

На транспирацию оказывает большое влияние и степень насыщения воздуха парами воды. Чем больше сухость воздуха, тем интенсивнее идет процесс транспирации, и наоборот.

Суточный ход транспирации

В течение суток транспирация зависит от внешних факторов. В утренние часы транспирация слабая, с поднятием солнца над горизонтом, повышением температуры воздуха и уменьшением содержания водяных паров в воздухе транспирация возрастает. К вечеру транспирация уменьшается и в ночные часы снижается до минимума.

Суточный ход транспирации у растений зависит от внешних факторов

Правильный суточный ход транспирации наблюдается только при безоблачном небе. Очень часто суточный ход транспирации имеет 2 максимума; минимум транспирации обычно падает на самые жаркие часы дня в полдень, что связано с обезвоживанием растений и закрытием устьиц.

Показатели транспирации

Транспирация у растений характеризуется следующими показателями:

  • интенсивность транспирации,
  • относительная транспирация,
  • транспирационный коэффициент,
  • продуктивность транспирации.

Интенсивность транспирации

Для сравнения транспирации растений ее обычно относят к единице площади и времени. Количество испаренной воды в единицу времени единицей поверхности листа называется интенсивностью транспирации.

Интенсивность транспирации у разных растений неодинакова в течение суток: днем у большинства растений она равна 15— 250 г. в час на 1 кв. м, ночью — 1—20 г.

Относительная транспирация

Чтобы иметь представление о скорости отдачи воды листовой поверхностью, ее сравнивают со скоростью испарения с открытой водной поверхности. Полученная величина называется относительной транспирацией. Относительная транспирация колеблется от 0,01 до 1,0.

Транспирационный коэффициент

Показателями транспирации могут также служит транспирационный коэффициент. Транспирационный коэффициент показывает, сколько граммов воды расходует растение за время накопления 1 г. сухого вещества.

Для правильного определения коэффициента необходимо учитывать не только сухой вес листьев, но обязательно и сухой вес стеблей и корней. Транспирационный коэффициент неодинаков для различных видов растений и даже для одного и того же вида растения, так как величина его зависит от условий произрастания.

Транспирационный коэффициент растений неодинаков и зависит от условий произрастания

Транспирационный коэффициент достаточно точно определен для однолетних растений; средняя его величина для травянистых растений равна 300—400 г.

Транспирационный коэффициент до известной степени характеризует потребность растения в воде и в какой-то мере может быть использован при расчетах количества поливной воды.

Продуктивность транспирации

Продуктивность транспирации — это количество граммов сухого вещества, накапливаемого растением за время транспирации 1 кг воды. Продуктивность транспирации колеблется от 1 до 8 г, а в среднем примерно равна 3 г. Зная величину транспирационного коэффициента, легко рассчитать продуктивность транспирации, и наоборот.

Лист как орган транспирации

Основную роль в транспирации у растений играют листья. Лист растения с верхней и нижней стороны покрыт эпидермисом, наружная стенка которого имеет кутикулу.

Лист как орган транспирации у розы

Строение устьиц и принцип их работ

В эпидермисе имеются отверстия — устьица, ограниченные двумя замыкающими клетками. В отличие от остальных клеток эпидермиса замыкающие клетки имеют хлоропласты и способны к фотосинтезу.

Толщина стенок замыкающих клеток неодинакова, противоположные щелям стенки, примыкающие к отверстию, утолщены. Поэтому при увеличении объема замыкающих клеток стенки растягиваются, тянут за собой примыкающие к щелям стенки, устьичная щель открывается. При уменьшении объема замыкающих клеток стенки их выпрямляются и устьичная щель закрывается

Замыкающие клетки устьиц злаков имеют иное строение они совершенно прямые, средняя часть клетки имеет очень толстые стенки, концы клеток тонкостенны и вздуты. При увеличении тургора концевые расширения замыкающих клеток увеличиваются в объеме, а средние толстостенные части отодвигаются друг от друга, открывая устьичную щель.

В основе открывания и закрывания устьиц лежит процесс перехода сахара в крахмал, и наоборот. Утром в замыкающих клетках начинается процесс фотосинтеза, в результате чего образуются осмотически деятельные сахара, которые на свету в крахмал не переходят.

Процесс перехода сахара в крахмал, и наоборот — лежит в основе открывания и закрывания устьиц

Осмотическое давление в замыкающих клетках повышается, увеличивается сосущая сила, поэтому они могут насасывать воду из близлежащих клеток эпидермиса.

Объем замыкающих клеток увеличивается, и устьичная щель открывается.

В темноте сахар превращается в крахмал, осмотическое давление в замыкающих клетках уменьшается, и соседние клетки эпидермиса сосут из них воду, поэтому объем замыкающих клеток становится меньше и устьичная щель закрывается.

Осмотическое давление в замыкающих клетках может повышаться также и за счет крахмала, который на свету может переходить в сахар. Движение устьиц зависит и от многих других факторов: изменения вязкости протоплазмы замыкающих клеток, содержания воды в клетках мезофилла, осмотического давления клеточного сока, температуры и других причин.

Обычно у большинства растений устьица открываются на рассвете, максимум открытия наблюдается к одиннадцати часам, к полудню щель устьица начинает несколько сужаться, и вечером оно закрывается. В жаркую погоду замыкающие клетки устьиц теряют много-воды и могут закрыться уже в полдень. Засухоустойчивые растения и в полдень имеют открытые устьица.

Устьичная транспирация

Устьичная транспирация— это испарение воды с поверхности клеток мезофилла в межклеточники листа и диффузия образовавшегося водяного пара через устьичные отверстия в атмосферу.

Интенсивность устьичной транспирации зависит от количества устьиц на единице поверхности листа. Величина эта значительно колеблется у разных видов растений. Травянистые растения имеют 100—300, а иногда и 1000 устьиц на 1 кв. мм, древесные растения, например береза и осина, соответственно 160 и 290 устьиц на 1 кв. мм.

Береза — древесное растение с устьичной транспирацией

Площадь устьичных отверстий составляет всего около 1% (не более 2%) от поверхности листа.

Несмотря на то, что площадь устьичных отверстий незначительна, диффузия водяного пара идет с большой скоростью, так как согласно закону Стефана испарение с малых поверхностей идет пропорционально их суммарному диаметру, а не площади, так как с периферии поверхности малых отверстий пар диффундирует с большей скоростью, чем с внутренних участков. В первом случае молекулы пара двигаются, более свободно, меньше сталкиваясь с другими частицами пара.

Столкновения же задерживают диффузию молекул пара, испаряющихся от внутренних частей круглой поверхности, что снижает скорость испарения воды. При расстоянии между щелями устьиц не меньше 10 диаметров щели испарение через мелко продырявленную перегородку может оказаться таким же, как и из открытого сосуда.

Кутикулярная транспирация

Кутикулярная транспирация представляет собой испарение воды всей поверхностью листа через кутикулу. Кутикулярная транспирация зависит от целого ряда условий:

  • температуры листьев,
  • скорости ветра,
  • влажности воздуха,
  • толщины кутикулы.

У молодых листьев со слабо развитой кутикулой кутикулярная транспирация может составлять 1/2 от общей интенсивности транспирации. У взрослых листьев кутикулярная транспирация в 10— 20 раз слабее устьичной. Весьма значительна кутикулярная транспирация у теневыносливых растений, достигающая почти 1/2 от всей транспирации.

Кутикулярная транспирация шиповника — испарение воды всей поверхностью листа через кутикулу

У растений влажных местообитаний, кутикулярная транспирация равна устьичной, а иногда и превосходит в связи с сильно развитой кутикулой, кутикулярная транспирация почти отсутствует.

Проницаемость кутикулы после смачивания резко увеличивается, поэтому в жаркие дни при поливе растений нельзя смачивать листья.

Регулировка транспирации (устьичная и внеустьичная)

Регулировка транспирации может быть устьичной и внеустьичной.

Устьичная регулировка

Устьичная регулировка представляет собой регулировку выхода водяного пара: устьица могут открываться и закрываться; следовательно, они могут регулировать транспирацию.

Внеустьичная регулировка

Внеустьичиой регулировкой называется регулировка образования пара из воды в межклеточниках листа. Под влиянием транспирации клеточные, стенки, теряющие воду, с большой силой удерживают оставшуюся воду, поэтому задерживается парообразование и уменьшается транспирация.

Если осмотический потенциал почвенного раствора высок, вода поступает в растение с трудом, замедленно, что отражается на расходовании воды растением. В этом случае растение закрывает устьица и этим обрекает себя на углеродное голодание.

Если у растений хорошо выражена внеустьичная регулировка, задерживающая образование пара, то растение может при неблагоприятных условиях без вреда для себя держать устьица открытыми, не снижая процесса фотосинтеза.

(4 5,00 из 5)
Загрузка…

Источник: https://LibTime.ru/agro/transpiraciya-u-rastenij.html

Транспирация

Формы транспирации и ее физиологическое значение
транспирация это, что такое транспирация
Транспира́ция (от лат. trans и лат. spiro — дышу, выдыхаю) — это испарение воды растением. Основным органом транспирации является лист.

Вода испаряется с поверхности листьев через клеточные стенки эпидермальных клеток и покровные слои (кутикулярная транспирация) и через устьица (устьичная транспирация).

В результате потери воды в ходе транспирации в клетках листьев возрастает сосущая сила.

Это приводит к усилению поглощения клетками листа воды из сосудов ксилемы и передвижению воды по ксилеме из корней в листья. Таким образом, верхний концевой двигатель, участвующий в транспорте воды вверх по растению, обусловлен транспирацией листьев.

  • 1 Количественные характеристики транспирации
  • 2 Кутикулярная транспирация
  • 3 Устьичная транспирация
  • 4 Литература
  • 5 Ссылки

Верхний концевой двигатель может работать при полном отключении нижнего концевого двигателя, причем для его работы используется не только метаболическая энергия как в корне, но и энергия внешней среды — температура и движение воздуха.

Транспирация спасает растение от перегрева. Температура сильно транспирирующего листа может примерно на 7 С° быть ниже температуры нетранспирирующего завядшего листа. Кроме того, транспирация участвует в создании непрерывного тока воды с растворенными минеральными и органическими соединениями из корневой системы к надземным органам растения.

Количественные характеристики транспирации

Интенсивность транспирации — это количество воды, испаряемой растением в граммах за единицу времени в часах единицей поверхности в дм². Эта величина колеблется от 0,15 до 1,5.

Транспирационный коэффициент — это количество воды в граммах, испаряемой растением при накоплении им 1 грамма сухого вещества.

Продуктивность транспирации — это величина, обратная транспирационному коэффициенту и равна количеству сухого вещества в граммах, накопленного растением за период, когда оно испаряет 1 кг воды.

Относительная транспирация — это отношение количества воды, испаряемой листом, к количеству воды, испаряемой со свободной водной поверхности той же площади за один и тот же период времени.

Экономность транспирации — это количество испаряемой воды в мг на 1 кг воды, содержащейся в растении.

Подсчитано, что с 1 га посева пшеницы выделяется около 2 тыс. т воды, кукурузы — 3,2 тыс. т, капусты — 8 тыс. т.

Литература

  • В. И. Малиновский. Физиология растений. Учеб. пособие. — Владивосток: Изд-во ДВГУ, 2004.

Ссылки

  • http://bse.sci-lib.com/article111792.html

транспирация, транспирация воды, транспирация это, что такое транспирация

Транспирация Информацию О

Транспирация

Транспирация
Транспирация Вы просматриваете субъект
Транспирация что, Транспирация кто, Транспирация описание

There are excerpts from wikipedia on this article and video

Источник: https://www.turkaramamotoru.com/ru/-28773.html

Определение интенсивности транспирации

Формы транспирации и ее физиологическое значение

Процесс транспирации характеризуется следующими параметрами: интенсивность транспирации, продуктивность транспирации, транспирационный коэффициент и относительная транспирация.

Интенсивность транспирации – это то количество воды, которое испаряется растением в единицу времени с единицы площади листа. Выражается в граммах воды, испаряемой растением за 1 час на 1г сырой массы или на 1 дм [1].

Обычно скорость транспирации колеблется днем в пределах 15-250 г/м2/час, а ночью может снижаться до 7-20г/м /час. Интенсивность транспирации находится в зависимости от многих внутренних и внешних факторов (от запаса воды в почве, насыщенности атмосферы водяными парами, от скорости ветра, температуры воздуха и др.)

Для определения интенсивности транспирации существуют количественные методы (с помощью потометра Ман- гина, потометра Пфеффера, потометра Веска) и качественные методы (хлоркобальтовый метод).

Ход работы

Определение интенсивности транспирации пото- метрическим методом

Для определения интенсивности транспирации используют потометр (рис ).

Прибор заполняют дистиллированной водой. В одно колено прибора вставляют каучуковую пробку, в отверстие которой устанавливают растение или стебель проростка. В другое колено наливают масло во избежание испарения воды.

Взвешивают прибор и оставляют в течение часа. Через указанное время прибор с растением взвешивают повторно. Разница между первым взвешиванием (начало эксперимента) и вторым (конец эксперимента) указывает на количество воды, транспирированной растением за время опыта.

Интенсивность транспирации определяется по формуле:

где

а – вес прибора с растением в начале эксперимента (г);

b – вес прибора с растением в конце эксперимента (г);

t – время экспозиции (час);

S – площадь листьев (дм”); определяют одним из методов, описанных в работе.

Объект исследованияКонтрольный весВес листа черезИнтенсивность транспирации
3мин.6мин.9 мин.
1
2
3
4
среднее

Интенсивность транспирации рассчитывается по формуле:

где

а – контрольный вес листа (г); b – вес листа через 3 мин., 6 мин., 9 мин.(г); t – время экспозиции (час); S – площадь листа.

Оборудование и реактивы:

Потометр, растения (проростки кукурузы, бобов и др.), масло растительное, торзионные весы с разновесами, миллиметровая бумага.

Вопросы для повторения:

  • Что такое транспирация?
  • Какие бывают типы транспирации?
  • Какие особенности строения листа способствуют транспирации?
  • В каких пределах колеблется величина интенсивности транспирации и от каких факторов она зависит?
  • Какую роль играет транспирация в жизни растений?

Определение состояния устьиц у растений

Устьица – это структуры, расположенные в эпидерме листа и обеспечивающие эффективную его транспирацию.

Устьице состоит из двух замыкающих клеток с неравномерно утолщенными стенками, образующих устьичную щель. Внутри этих клеток находятся хлоропласты. В зависимости от вида растения устьица имеют округлую или удлиненную форму. Длина устьичной щели 20-30, а ширина 4-6 мкм. Обычно устьица занимают 1-2% площади листа.

В зависимости от вида растений устьица могут располагаться только на нижней стороне листа (гиперстоматические), только на верхней стороне листа (гипостоматические), или на обеих сторонах листа (амфистоматические).

Существует 3 типа физиологических реакций, обеспечивающих движение замыкающих клеток устьиц: фотоактивные, гидроактивные и гидропассивные.

Функционирование устьичного механизма зависит как от внутренних факторов (парциальное давление углекислого газа в межклетниках, ионный баланс, возраст листьев, суточные ритмы, наличие фитогормонов и др.), так и от внешних факторов среды (влажность воздуха, освещенность, температура, водоснабжение и др.).

Целью данной работы является изучение устьичного аппарата различных видов растений, наблюдение за состоянием устьиц (степень открытости устьичных щелей), подсчет количества устьиц на единицу площади листа.

Существует несколько методов определения состояния устьичного аппарата.

Ход работы

1. Метод Молиша Г. (метод инфильтрации)

Этот метод основан на способности различных жидкостей проникать в устьичные щели в зависимости от их открытости.

Разные жидкости обладают различной смачивающей способностью: легко проникает в устьичную щель ксилол, хуже бензол, спирт проникает только через широко открытые устьица.

Если межклетники заполнены жидкостью, то лист становится прозрачным, а если воздухом – то матовым.

На нижнюю поверхность горизонтально положенного листа нанести капли ксилола, бензола и спирта и оставить до полного исчезновения капель (они либо испарятся, либо проникнут внутрь листа). Если в месте нанесения капли цвет листа не изменился, это значит, что растворитель Испарился. Если в этом месте лист стал прозрачным, то растворитель проник через устьица в межклетник.

Результаты опыта записать в таблицу:

Объект исследованияДействие:Состояние устьиц
БензолаКсилолаСпирта

Сделать вывод о состоянии открытости устьиц. 2. Метод Молотковского (метод отпечатков) На нижнюю поверхность листа стеклянной палочкой нанести каплю раствора кинопленки в ацетоне и быстро размазать ее тонким слоем.

После полного высыхания снять образовавшуюся пленку пинцетом, поместить на предметное стекло и рассмотреть под микроскопом без покровного стекла при большом увеличении.

Подсчитать число полностью открытых, полуоткрытых и закрытых устьиц и рассчитать процент полностью открытых устьиц. Зарисовать

Метод Бусканьоли

Снять с нижней поверхности листа кусочек эпидермиса и быстро поместить его в 50%-ный раствор спирта на 5-10 мин. Затем срезы рассмотреть под микроскопом и зарисовать состояние устьиц.

Оборудование и реактивы:

Микроскоп, предметные стекла, различные комнатные растения, бензол, ксилол, спирт 96° и 50%, раствор кинопленки в ацетоне.

Вопросы для повторения:

Где встречается больше устьиц: в молодом или старом листе .Почему? Зависиг ли величина устьичной щели от освещенности? Указать физиологические механизмы, лежащие в основе движения замыкающих клеток.

Термины

Апопласт – совокупность всех свободных пространств клеток, представленная межфибриллярными полостями и межклеточниками, по которым осуществляется свободная диффузия веществ.

Водный баланс – соотношение между поглощением и расходованием воды растением. Существует 3 случая:

а) поглощение больше расходования;

б) поглощение равно расходованию;

в)поглощение меньше расходования (водный дефицит).

Гуттация – выделение листьями растений (через водяные устьица – гидатоды – на краях и кончиках листьев) капельной жидкости под воздействием корневого давления, когда поступление воды в растение превышает транспира- цию. Наблюдается рано утром или в условиях повышенной влажности. Данное явление помогает растениям освобождаться от избытка воды и солей.

Корневое давление – сила, поднимающая воду и растворенные в ней различные вещества вверх по сосудам. Be- личина непостоянная, зависит от внешних и внутренних факторов. В оптимальных условиях она равна 2-3 барам. Корневое давление может характеризовать поглощающую деятельность корня.

Коэффициент завядания – количество воды в почве, выраженное в процентах, оставшейся неиспользованной растениями во время увядания. Показатель, характеризующий почву, а не само растение. Коэффициент завядания данной почвы – это величина влажности почвы, при которой происходит длительное завядание.

Коэффициент транспирации – количество воды (г), транспирированной растением и затраченной для накопления одного грамма сухого вещества. Обычно варьирует в пределах видов от 300 – до 1000 г воды / на г сухого вещества. Каждое растение имеет свой коэффициент, зависящий не столько от видовой принадлежности, сколько от внешних условий.

Мертвый запас воды – количество воды в почве, полностью недоступной растению. Мертвый запас зависит только от типа почвы и ее механического состава и колеблется от 1-3 до 9. Чем больше глинистых частиц в почве, тем больше мертвый запас воды.

Относительная транспирация – отношение интенсивности транспирации с единицы листовой поверхности к скорости испарения с единицы открытой водной поверхности. Величина ее колеблется от 0,01 до 1,0. Это понятие имеет больше теоретическое значение, так как доказывает, что транспирация – процесс, регулируемый самим растением.

Пасока – жидкость, выделяющаяся из среза в основании стеблей или корней растений под действием корневого давления. В пасоке содержатся соли, аминокислоты, амиды, органические кислоты, цитокинины и другие вещества. По содержанию этих веществ в пасоке можно судить об их передвижении из корня в побег.

Плач растений – явление вытекания пасоки из перерезанного стебля. Плач иногда продолжается в течение нескольких суток, и количество выделившейся пасоки может быть очень большим, например – у тыквы до одного литра в сутки. Интенсивность плача определяется потоком солей в сосуды ксилемы. Плач представляет собой одно из проявлений активного транспорта веществ.

Пассивный механизм движения устьиц – закрытие устьиц в условиях высокой насыщенности водой, что обусловленно сдавливающим действием соседних клеток эпидермиса на устьичные клетки. Данный механизм предложил Столфельт в 1960 году.

Свободная вода – вода, которая сохраняет все свойства чистой воды, т.е. легко передвигается по растению, обладает свойствами растворителя, испаряется в процессе транспирации и замерзает при температуре ниже 10°С. Растертая, содержащие большое количество свободной воды, менее устойчивы к морозам.

Связанная вода – входит в состав химических соединений и недоступна растению. Связывается водородными или другими связями с молекулами белка. Не участвует в биохимических реакциях, не передвигается по растению и не замерзает при низких температурах.

Транспирационный ток – движение воды по сосудам ксилемы, вызванное транспирацией. Осуществляется по градиенту водного потенциала. Активными двигателями водного тока являются живые клетки, примыкающие к верхнему и нижнему концам всей проводящей системы растения.

Тургор – напряженное состояние органов растения, влияющее, как и осмотическое давление, на скорость поступления воды в клетку.

Фотоактивный механизм движения устьиц – состоит в том, что замыкающие клетки устьиц, содержащие хлоро- пласты, на свету открываются тем шире, чем больше интенсивность освещения, увеличивающая синтез углеводов, а следовательно – и всасывающую силу устьиц, за счет чего происходит поглощение воды и открытие устьиц.

[1] Определение интенсивности транспирации при помощи торзионных весов (по Л.А.Иванову)

Метод применяют при сравнении интенсивности транспирации листьев разных ярусов.

Лист или веточку растения взвесить на торзионных весах сразу же после их срезания (контрольный вес), затем взвешивание повторить 3-4 раза с интервалом в 3 минуты. Результаты взвешивания записать в таблицу:

:

Добавить статью в закладки

Источник: http://PortalEco.ru/fiziologija-rastenij/opredelenie-intensivnosti-transpiracii.html

Схема водного транспорта в растении

  Вода поступает в растение благодаря отрицательному давлению, создающемуся в сосудах ксилемы. Движущей силой этого процесса является транспирация. Другой движущей силой будет пассивный, осмотический транспорт.

   Транспирация начинается с испарения воды через устьичные щели, расположенные преимущественно с нижней стороны листа. Процесс происходит когда устьица открыты для обеспечения газообмена СО2 и О2, необходимых для процесса жизнедеятельности растения и протекания фотосинтеза.

Испарившаяся через устьица влага замещается влагой из нижерасположенных смежных клеток сосудов ксилемы. В эти клетки влага движется из соседних клеток и т. д. Стенки клеток проводящей системы изгибаются внутрь, создается отрицательное давление, которое заставляет воду двигаться вверх по растению от корней к листьям.

Таким образом, приходит в движение весь «водяной столб», от устьичных клеток до клеток корневых волосков.

Роль устьиц в транспирации

   Основной путь потери воды растением — транспирация, но для процесса фотосинтеза необходим обмен углекислым газом и кислородом с окружающим воздухом через открытые устьица.

Из этого следует, что для нормальной и продуктивной работы растения должен поддерживаться определенный баланс между потерей жидкости и потреблением С02 через устьица. Растение регулирует этот процесс степенью открытия устьичных щелей. Открытие и закрытие устьиц регулируется светом.

Другие параметры микроклимата также оказывают существенное влияние на интенсивность транспирации. Один из главных — относительная влажность воздуха, а исходя из требований растения — ДДВП (дефицит давления водяного пара).

ДДВП это разница между давлением водяного пара при максимальном насыщении (такие условия обычно создаются внутри устьич-ной камеры) и в наружном воздухе.

Наряду с температурой (тепловая энергия) эти параметры (ДДВП и свет) играют ключевую роль в определении интенсивности транспирации, времени ее начала и окончания. Все это имеет непосредственную связь с условиями в корнеобитаемой среде.

   Устьица открываются, когда утром на лист падают лучи солнца. В условиях теплицы транспирация начинается ориентировочно при 150-200 Вт/м2 интенсивности солнечного света.

   По разнице температуры поверхностей листа томата и датчика (нетранспирирующая поверхность), которая является результатом охлаждения растения после начала транспирации, четко определяется момент начала транспирации.

   Старт первого полива должен совпадать с началом активной транспирации. Этот интервал времени также непосредственно связан со стратегией управления температурой отопительных труб в утренний период. Именно поэтому применяется тактика снижения минимальной температуры труб «по свету» в пределах 200-400 Вт/м2, а не по времени суток.

Используя установки «минимальной температуры трубы» в условиях с интенсивностью прихода солнечной радиации выше 400 Вт/м2, агроном столкнется лишь с допол-нительными расходами на отопление, транспирация уже будет инициирована солнечным светом, и необходимость в дополнительном стимулировании с помощью нижних труб обогрева отпадает.

Однако этолишьобщееправило. Например, при низкой температуре субстрата срок начала транспирации может изменяться. При -12 оС транспирация начинается на 2 ч позже по сравнению с ситуацией, когда субстрат имеет температуру -17оС.

В таких случаях время первого полива и установки по минимальной температуре труб должно быть соответственно изменено.

Интенсивность транспирации в течение дня зависит прежде всего от изменений параметров микроклимата в теплице. Чем ниже относительная влажность воздуха и выше температура, тем интенсивнее процесс транспирации. Ниже рассматриваются две стандартные ситуации:

 Солнечный день

   В течение дня, если потребление воды корневой системой отстает от уровня транспирации, клетки растения теряют тургор и устьица закрываются, уровень транс-пирации резко снижается, так растение предотвращает увядание.

Кроме транспирации, сильно снижается интенсивность фотосинтеза, и, в свою очередь, качество плодов и урожайность резко падают. Температура растения и воздуха в теплице возрастает, как следствие, усиливается дыхание растения, оно начинает «сжигать» само себя.

Именно по этой причине необходимо поддерживать работу корневой системы в активном состоянии. Это особенно важно в весенний период, при росте прихода солнечной радиации.
   Также в условиях хорошей освещенности (от 800-1000 Дж/см2 в день) рекомендуется привязывать поливы к суммарному приходу солнечной радиации.

   Количество раствора на 1 Дж при такой корректировке зависит от типа культивационного сооружения и используемого вида датчика солнечной радиации.

   В экстремальных условиях, которые характерны для многих Российских регионов, полезно использовать показатель водопотребления культуры (разница между поливом и дренажом) как индикатор состояния растений. Это поможет правильно использовать системы зашторивания и испарительного охлаждения.

Использование обеих этих систем не должно приводить к резкому снижению уровня транспирации культуры и, соответ-ственно, водопотребления, главная цель их применения — помощь растению, и особенно корневой системе, в периоды с высокими уровнями транспирации. При неправильном использовании систем СИО можно получить ослабленную культуру, а чрезмерное использование затеняющих экранов приводит к снижению урожайности, так как свет определяет урожайность!

Пасмурный день

   В пасмурные дни транспирация низка, поэтому время первого и особенно последнего поливов соответственно должно быть изменено. Это легко сделать, используя современные климатические компьютеры совместно с датчиками влажности субстрата и регистрации прихода солнечной радиации.

   В пасмурные дни установки «минимальной температуры труб» (50-60 оС) могут быть использованы в течение нескольких часов после полудня совместно с вентиляцией, чтобы стимулировать транспирацию.

Это гарантирует то, что необходимые элементы питания все-таки попадают в растение, и можно контролировать его развитие, направляя по вегетативному или генеративному пути.

Следует помнить, что слишком активная сти-муляция транспирации с использованием температуры в нижнем контуре отопления может привести к резкому росту относительной влажности воздуха из-за резкого роста транспирации.

Для контроля влажности обычно бывает вполне достаточно температуры нижнего контура -40 °С. Учитывая нынешние цены на газ, минимальная температура нижнего контура не должна превышать 45 °С, во всяком случае часто. Установка тем-пературы 35 °С при автоматическом увеличении на 10оС по влажности воздуха в пределах 80-90% вполне приемлема.

   Внимательно анализируйте графики компьютера, управляющего микроклиматом, внимательно отслеживайте взаимосвязь влажности воздуха и температуры нижнего контура. Часто изменение температуры труб обогрева с 40оС на 60оС не приводит к желаемому изменению влажности воздуха, а затраты при этом растут.

   Обязательным условием снижения влажности воздуха являются приоткрытые фрамуги для выхода влаги из теплицы. Поэтому задавайте программу управления отоплением и вентиляцией так, чтобы их графики были близки друг к другу, это создаст в теплице активный микроклимат. В периоды с низкой температурой наружного воздуха (

Источник: https://www.gidroponika.su/gidroponika-teorija.html/fiziologija-rastenij/115-transpiracija-rastenij.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.